Combined Scheduling of Time-Triggered and
Priority-Based Task Sets in Ravenscar

8 s Lt T PR R L B LR B e g |

Jorge Real, Sergio Saez, Alfons Crespo

Universitat Politecnica de Valencia, Spain

23rd International Conference on Reliable Software Technologies - Ada-Europe 2018 - Lisbon, Portugal, June 18-22, 2018

Outline

= Introduction

m System Model

m TT Scheduler

m [[Patterns

m Experimental Results
m Conclusion

Introduction

Introduction

m RT control & communication tasks need precise
timing — execute close to their intended start time

m In practice, release delays occur
= Actual_Start_Time - Intended_Start Time
= Degrade performance of digital controllers
= Hinder synchronisation of communication tasks

m e.g. under Deadline Monotonic scheduling:

Introduction

m Priority-based scheduling
v Time/logic separation, flexibility
Potentially large release delays (interference, blocking)

= Techniques exist for PB scheduled systems
m Reduce periods/deadlines to gain priority
m Task decomposition (e.g., initial-final parts at high prio)

m Time-triggered scheduling
v Predictable timing, release delays determined a priori

Building a schedule is complex (NP-complete)
Problem gets worse with more/longer tasks

Introduction

m Our proposal (2016) was to combine

= a 1T plan including only delay-sensitive tasks
Typically, control and communication tasks

= a PB schedule for delay-tolerant tasks
HMI, logging, sporadics...

m Highest prio. of PB scheduler reserved for TT tasks

m Best of both worlds
= Fewer tasks lead to simpler TT plans
= PB benefits for the rest of tasks
No need for off-line plan, no task splitting
m Proposal included TT model, Ada implementation
and TT task patterns

Introductlon

m Our proposal (2018) is to make the approach
compatible with the Ravenscar tasking profile

= Take it closer to certifiable, embedded, HI systems,
natural niches of Ravenscar and TT technology

s We have dropped soft real-time features that
required non-Ravenscar mechanisms
= Overrun avordance at the task level (ATC)

= Overrun tolerance with priority demotion (dynamic
priorities)

m But we have also added new features

System Model

System Model

m Two task subsets

= Delay-sensitive tasks: run according to a TT plan, using
the top priority of a PB scheduler

= Delay-tolerant tasks: PB scheduled using rest of priorities

m TT plan = ordered sequence of time slots
= Each slot has a duration and starts right after previous
= Sequence repeated cyclically

= Actions during slot duration depend on slot type
Run one TT task, under different regimes
Other scheduler actions
m Schedulability: TT plan regarded as a high priority
flow of tasks with offsets

System Model

m Slot types
= Reqgular [1,2]
Run TT task 1, with overrun check (fail > Program_Error)

= Continuation [1c]

Run TT task 71, Hold/Resume for sliced execution of long tasks
= Optional [(3)]

Run TT task n, if the task so requires

= Empty [O]

Spare time available for PB tasks

= Mode change [~v]
Process pending mode change request

Slot# 0 1 2 3

TT Scheduler

TT Scheduler

m Arbitrates execution of the TT plan

s Release TT workload at slot switch
s Check for overruns
= Apply Hold/Resume

= Driven by a Timing Event set to next slot switch

m Scheduler actions depend on type of slot
= Empty slot: nothing to do — slot available for PB
= Mode change slot: empty + enforce new plan at slot end
= Reqgular, continuation and optional: apply the model

TT Scheduler

m Generic package on Nr Of Work IDs
m Visible types for defining slots and building plans

type Kind Of Slot is (TT Work Slot, Empty Slot, Mode Change Slot);

type Time Slot (Kind : Kind Of Slot := TT Work Slot) is record
Slot Duration : Ada.Real Time.Time Span;

case Kind 1is
when TT Work Slot =>

Work Id : TT Work Id; -— Range 1..Nr Of Work IDs
Is Continuation : Boolean := False;
Is Optional : Boolean := False;
when others =>
null;

end case;
end record;

type Time Triggered Plan is array (Natural range <>) of Time Slot;
type Time Triggered Plan Access is access all Time Triggered Plan;

TT Scheduler

m Generic package on Nr O

f_Work_IDS

m Visible types for defining slots and building plans

m Visible procedures

= Set Plan (TTP) — Set the next TT plan to run

m Wait For Activation
wait for own slot

(Work Id) — For TT tasks to

= Continue Sliced, Leave TT Level (later)

m Internal data structure wo

rk Control Block

m Has Completed, Is Waiting, Work Thread ID,...

s for TT tasks to wait

m Array of suspension objec
s PO with TE handler

TT Patterns

TT Patterns

m Patterns using Regular slots

Simple TT Task

-— Simple TT Task

loop
Wait For Activation
Do My Work;

end loop;

TT Plan
Initial - Final execution [N [NERN]
I F
[_F 7-aSk -— I-F TT Task

loop

Wait For Activation (1);

Do Initial;

Wait For Activation (1);

Do Final;
end loop;

Slot overrun
causes
Program_Error

Slot overrun
causes
Program_Error

TT Patterns

m Patterns using Continuation slots
Sliced TT Task

TT Plan

Execution

—-— Sliced TT Task Slot overrun

loop Continuation slot causes

Wait For Activation 7 inal ol Program_Error
Do My Work Sliced; Terminal slot only in terminal

end loop; slots

= Pattern looks like Simple TT Task, but plan is different
One or more cont. slots, ending with a terminal regular slot

= Hold/Resume implemented using runtime thread ops

TT Patterns

m Early completion of sliced sequence
Sliced TT Task

Continuation slot

Terminal slot

= Work Control Block has all needed flags for the TT
scheduler to handle propagation

TT Patterns

m Hold deserves special consideration if sliced task is
running a protected action (PA)

m Deferred Hold — blocking time charged to next slot

= Use Ceiling at scheduler priority (Interrupt_Priority'Last)
Only acceotable with granted very short PAs (not checkable)

= Annotate pending Hold and do it at end of PA — runtime

= In both cases, blocking can be absorbed with empty slot
Need to check that empty follows continuation
Need to account potential interference to PB tasks

m Alternatively, forbid PAs while running sliced
= Not trivial to detect statically
= Can be detected at runtime (Program_Error)

TT Patterns

m Other patterns with sliced parts and motivation for
Continue Sliced

loop -- I-Ms-F Pattern
Wait For Activation
Do Initial Part;
Wait For Activation
Do Mandatory Sliced;
Wait For Activation
Do Final Part;

end loop;

loop -- IMs-F Pattern
Wait For Activation
Do Initial Part;
Continue Sliced;
Do Mandatory Sliced;
Wait For Activation
Do Flnal Part;

end loop

[-Ms-F and IMs-F

TT Plan -I--l- 5

Execution
I'MS'F M cont’d
e ->

Continue SllcedA Res .', ‘: ‘\

5 Hold WFAE propagate + WFA :

Execution ’ "
F

IMs-F I M cont’d

TT Patterns

m Patterns with non-TT parts
Initial - Priority_Based — Final (I-P-F)

TT Plan (%) EE -- Initial-Priority Based-Final
loop

Wait For Activation (1);
Do Initial Part;

Leave TT Level (1);
TT Level - . [‘ Do Priority Based Part;
Wait For Activation (1);

Do Final Part;
end loop;

|
/ s
'\ ',' |:| Interference from TT tasks
PB Level
D Interference from PB tasks

P

Leave TT Level

= Dynamic priorities, but in a restricted manner
Changes only at instance of affected task
Changes only between base and TT priorities
Conceptually, like a ceiling inherited when running the TT parts

TT Patterns

m Pattern using Optional slot
Priority_Based - Optional_Final (P-[F])

delay until Next;

Do My Work;

Next := Next + Period;
if Needed then

] |‘
TT Level “‘ \ Wait For Activation (1);

TT Plan ..

Do Final Part;
' Fi x] Next := ...;
' g 1

PB_Level %de/ay end if;

end loop;
1
WFA ': ,-=-P WFA (if Needed)

g ! I"
“. ' \
l " ‘\‘\"- dela;}{—--” ‘ \\\""’m
) ____.-» delay (if not Needed)

P ;“I-D——eriod P

= TT part is optional
= "No-show" is not an error with optional slots

Experimental Results

| S : S M ST : - =

Experimental Results

Measured release delays

1| o (38| @ z |4 4 logll 2 |4 @ |2| @ P
11T |||||||||||||| ILLL |||||||||||||| | ||||||||||||||||| [LLL |||||||||||||| | ||||||||||||||||| ||||||||| ||||||||| | ||||||||||||||||| ILLL |||||||||||||| 11T |||||||||||||| | ||||||| |||||||

50 250 420 650 820 1100 1220 1450 1650 1820 1920
200 400 600 800 1000 1200 1400 1600 1800 2000

Accumulated Occurences

Release delay (ms)

Experimental Results

Measured release delays — with overhead correction

: : :
| l

|
1| o3l o | o |a algll o la o [2| @ Halla
[N |||||||||||||| [LLAI |||||||||||||| ||||||||||||||||| [T |||||||||||||| | ||||||||||||||||| ||||||||| ||||||||| ||||||||||||||||| [LLAI |||||||||||||| [N |||||||||||||| | ||||||| | |||||||

50 250 420 650 820 1100 1220 1450 1650 1820 1920
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Accumulated Occurences

Release delay (ms)

Conclusion

m TT scheduling transported to Ravenscar

m Dropped non-Ravenscar features (ATC, dyn prio)
s Added optional and continuation slots

m Pursue standardisation

m All code available in GitHub

