
Combined Scheduling of Time-Triggered and
Priority-Based Task Sets in Ravenscar

Jorge Real, Sergio Sáez, Alfons Crespo

Universitat Politècnica de València, Spain

23rd International Conference on Reliable Software Technologies - Ada-Europe 2018 - Lisbon, Portugal, June 18-22, 2018

2

Outline

◼ Introduction

◼ System Model

◼ TT Scheduler

◼ TT Patterns

◼ Experimental Results

◼ Conclusion

Introduction

3

Introduction

◼ RT control & communication tasks need precise
timing – execute close to their intended start time

◼ In practice, release delays occur
◼ Actual_Start_Time - Intended_Start_Time

◼ Degrade performance of digital controllers

◼ Hinder synchronisation of communication tasks

◼ e.g. under Deadline Monotonic scheduling:

4

d1 d2

d3

Introduction

◼ Priority-based scheduling
✓ Time/logic separation, flexibility

 Potentially large release delays (interference, blocking)

◼ Techniques exist for PB scheduled systems

◼ Reduce periods/deadlines to gain priority

◼ Task decomposition (e.g., initial-final parts at high prio)

◼ Time-triggered scheduling
✓ Predictable timing, release delays determined a priori

 Building a schedule is complex (NP-complete)
 Problem gets worse with more/longer tasks

5

Introduction

◼ Our proposal (2016) was to combine

◼ a TT plan including only delay-sensitive tasks

◼ Typically, control and communication tasks

◼ a PB schedule for delay-tolerant tasks

◼ HMI, logging, sporadics…

◼ Highest prio. of PB scheduler reserved for TT tasks

◼ Best of both worlds

◼ Fewer tasks lead to simpler TT plans

◼ PB benefits for the rest of tasks

◼ No need for off-line plan, no task splitting

◼ Proposal included TT model, Ada implementation
and TT task patterns

6

Introduction

◼ Our proposal (2018) is to make the approach
compatible with the Ravenscar tasking profile

◼ Take it closer to certifiable, embedded, HI systems,
natural niches of Ravenscar and TT technology

◼ We have dropped soft real-time features that
required non-Ravenscar mechanisms

◼ Overrun avoidance at the task level (ATC)

◼ Overrun tolerance with priority demotion (dynamic
priorities)

◼ But we have also added new features

7

System Model

8

System Model

◼ Two task subsets

◼ Delay-sensitive tasks: run according to a TT plan, using
the top priority of a PB scheduler

◼ Delay-tolerant tasks: PB scheduled using rest of priorities

◼ TT plan = ordered sequence of time slots

◼ Each slot has a duration and starts right after previous

◼ Sequence repeated cyclically

◼ Actions during slot duration depend on slot type

◼ Run one TT task, under different regimes

◼ Other scheduler actions

◼ Schedulability: TT plan regarded as a high priority
flow of tasks with offsets

9

◼ Slot types

◼ Regular [1,2]

◼ Run TT task n, with overrun check (fail → Program_Error)

◼ Continuation [1c]

◼ Run TT task n, Hold/Resume for sliced execution of long tasks

◼ Optional [(3)]

◼ Run TT task n, if the task so requires

◼ Empty []

◼ Spare time available for PB tasks

◼ Mode change []

◼ Process pending mode change request

10

System Model

TT Scheduler

11

TT Scheduler

◼ Arbitrates execution of the TT plan

◼ Release TT workload at slot switch

◼ Check for overruns

◼ Apply Hold/Resume

◼ Driven by a Timing Event set to next slot switch

◼ Scheduler actions depend on type of slot

◼ Empty slot: nothing to do – slot available for PB

◼ Mode change slot: empty + enforce new plan at slot end

◼ Regular, continuation and optional: apply the model

12

TT Scheduler

◼ Generic package on Nr_Of_Work_IDs

◼ Visible types for defining slots and building plans

13

type Kind_Of_Slot is (TT_Work_Slot, Empty_Slot, Mode_Change_Slot);

type Time_Slot (Kind : Kind_Of_Slot := TT_Work_Slot) is record

Slot_Duration : Ada.Real_Time.Time_Span;

case Kind is

when TT_Work_Slot =>

Work_Id : TT_Work_Id; -- Range 1..Nr_Of_Work_IDs

Is_Continuation : Boolean := False;

Is_Optional : Boolean := False;

when others =>

null;

end case;

end record;

type Time_Triggered_Plan is array (Natural range <>) of Time_Slot;

type Time_Triggered_Plan_Access is access all Time_Triggered_Plan;

TT Scheduler

◼ Generic package on Nr_Of_Work_IDs

◼ Visible types for defining slots and building plans

◼ Visible procedures
◼ Set_Plan (TTP) – Set the next TT plan to run

◼ Wait_For_Activation (Work_Id) – For TT tasks to

wait for own slot

◼ Continue_Sliced, Leave_TT_Level (later)

◼ Internal data structure Work_Control_Block

◼ Has_Completed, Is_Waiting, Work_Thread_ID,…

◼ Array of suspension objects for TT tasks to wait

◼ PO with TE handler

14

TT Patterns

15

TT Patterns

◼ Patterns using Regular slots

16

Simple TT Task

Initial - Final
I-F Task

TT Patterns

◼ Patterns using Continuation slots

Sliced TT Task

◼ Pattern looks like Simple TT Task, but plan is different

◼ One or more cont. slots, ending with a terminal regular slot

◼ Hold/Resume implemented using runtime thread ops

17

TT Patterns

◼ Early completion of sliced sequence

Sliced TT Task

◼ Work_Control_Block has all needed flags for the TT

scheduler to handle propagation

18

TT Patterns

◼ Hold deserves special consideration if sliced task is
running a protected action (PA)

◼ Deferred Hold – blocking time charged to next slot

◼ Use Ceiling at scheduler priority (Interrupt_Priority'Last)

◼ Only acceotable with granted very short PAs (not checkable)

◼ Annotate pending Hold and do it at end of PA – runtime

◼ In both cases, blocking can be absorbed with empty slot

◼ Need to check that empty follows continuation

◼ Need to account potential interference to PB tasks

◼ Alternatively, forbid PAs while running sliced

◼ Not trivial to detect statically

◼ Can be detected at runtime (Program_Error)

19

TT Patterns

◼ Other patterns with sliced parts and motivation for
Continue_Sliced

I-Ms-F and IMs-F

20

TT Patterns

◼ Patterns with non-TT parts

Initial - Priority_Based – Final (I-P-F)

◼ Dynamic priorities, but in a restricted manner

◼ Changes only at instance of affected task

◼ Changes only between base and TT priorities

◼ Conceptually, like a ceiling inherited when running the TT parts
21

TT Patterns

◼ Pattern using Optional slot

Priority_Based - Optional_Final (P-[F])

◼ TT part is optional

◼ "No-show" is not an error with optional slots

22

Experimental Results

23

Experimental Results

24

Measured release delays

Release delay (ms)

Experimental Results

25

Measured release delays – with overhead correction

Release delay (ms)

Conclusion

◼ TT scheduling transported to Ravenscar

◼ Dropped non-Ravenscar features (ATC, dyn prio)

◼ Added optional and continuation slots

◼ Pursue standardisation

◼ All code available in GitHub

26

27

